Evolution of Microstructure and Mechanical Properties of Gas Tungsten Arc Welding of Super Duplex Stainless Steel UNSS32750

Authors

  • Ahl Sarmadi, M.
  • Behjat, A.
  • Edris, H.
  • Mohtadi Bonab, M.A.
  • Shamanian, M.
  • Szpunar, J.
Abstract:

In this study the microstructure and mechanical properties of super duplex stainless steel UNS S32750 welding was studied. For this purpose, the method of gas tungsten arc and filler metal AWS ER2594 with a diameter of 4.2 mm was used. In order to investigate the microstructure light microscopy and electron microscopy equipped with backscatter electron diffraction were used. Mechanical properties were studied by hardness and tensile tests. Weld metal had  Cast structure with austenite in the dendrite form  located in ferrite matrix. It was also observed in the melting zone after welding, the ferrite volume fraction decreased to 50 percent 60% base metal ferrite) ,Due to the low cooling rates and  high heat input method in the gas tungsten arc welding. Vickers micro-hardness test method was carried out on the samples showed that average about 285 Vickers hardness of base metal; however, hardness in the fusion region due to increased austenite fraction fell to 250 Vickers. But hardness in the heat-affected zone due to lower volume fraction of austenite and ferrite phase formation of chromium carbide intermetalic compounds increased to 340 Vickers. The results of the tensile test showed that the tensile strength decreased with increasing heat input, because of increase the size of grains due to the increased heat input.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Microstructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding

Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the ...

full text

Microstructure and mechanical characteristics of dissimilar aluminium alloy joining employing gas tungsten arc welding

Despite the increased use of aluminium alloys in several industries, their common concern is the difficulty of joining dissimilar alloys using welding techniques. Based on this, the primary purpose of this research is to assess the mechanical characteristics of dissimilar joining of heat-treatable 6061 and non-heat-treatable 5083 aluminium alloys by gas tungsten arc welding and to discover the ...

full text

Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of a Duplex Stainless Steel

Duplex stainless steels (DSSS) have a microstructure composed of ferrite and austenite phases that gives them a very good combination of mechanical and corrosion properties. These steels are desirable for many applications in the chemical and petrochemical industries. In the present study, a type of stainless steel was cast, solution annealed at 1200°C for 60 min and then quenched in water. Ini...

full text

Influence of multiple welding cycles on microstructure and corrosion resistance of a super duplex stainless steel

.......................................................................................... v Appended Publications .................................................................. vii Table of

full text

Modeling of Transport Phenomena in Gas Tungsten Arc Welding of Ni to 304 Stainless Steel

This study investigates transport phenomena in the weld pool (WP) of gas tungsten arc (GTA) welding of Nickel to 304 stainless steel. A finite element 3D simulation of fluid flow and heat transfer of spot welding without consumable is accomplished which leads to prediction of the weld zone shape, weld penetration and dilution of alloying elements. The model includes magneto-hydrodynamics (MHD),...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  50- 63

publication date 2016-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023